

§15.3 Polar Coordinates

1

- Recall the defn of integral:

$$\iint_D f(x, y) dA = \lim_{N \rightarrow \infty} \sum_{(x_i, y_j) \in R} f(x_i, y_j) \Delta x \Delta y$$

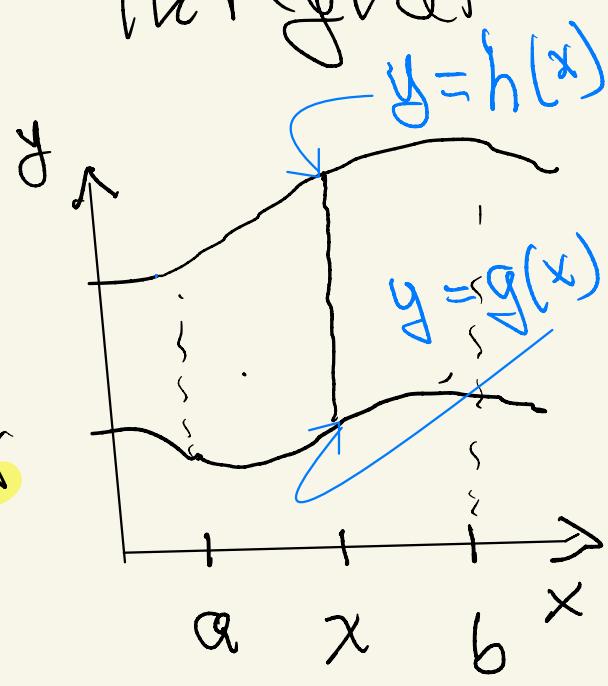
{ } { }

2-D Riemann
Sum

- To evaluate: iterate the integral

$$\iint_D f(x, y) dA =$$

$$= \int_a^b \int_{g(x)}^{h(x)} f(x, y) dy dx$$



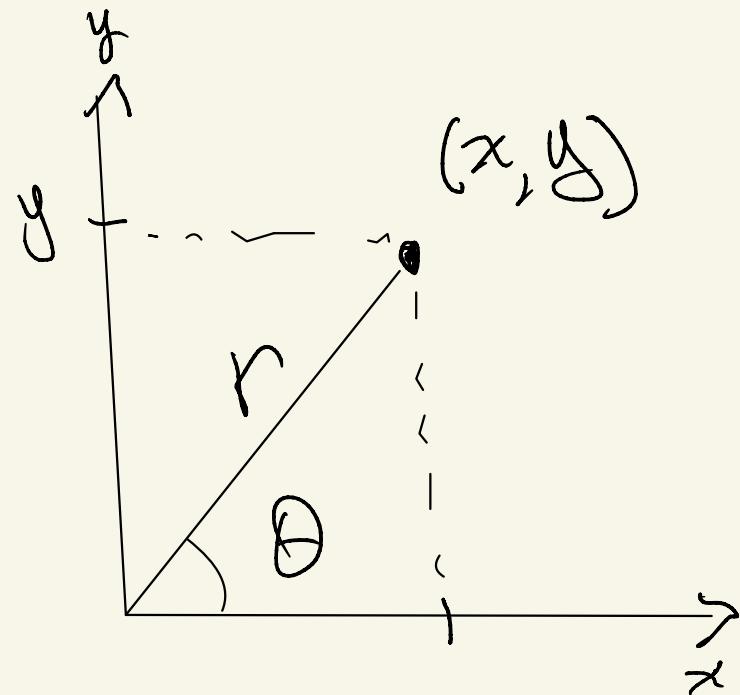
- when the function f is **radially symmetric** the integral can be evaluated more easily in **polar coordinates**
- The idea: change variables from $(x, y) \rightarrow (r, \theta)$, and then write the **Riemann Sum** in terms of r and θ

ie $\iint_R f(x, y) dA = \lim_{N \rightarrow \infty} \sum_{r_i, \theta_j} \tilde{f}(r_i, \theta_j) \Delta r \Delta \theta$

$\underbrace{\Delta r}_{\text{Riemann}}$ $\underbrace{\Delta \theta}_{\text{Sum in } (r, \theta)}$

- Recall the expression for x and y in terms of r and θ :

$$\begin{aligned}x &= r \cos \theta \\y &= r \sin \theta\end{aligned}$$



- Thus it's easy

to write $f(x, y)$

in terms of r & θ :

$$f(x, y) = f(r \cos \theta, r \sin \theta) = f(r, \theta)$$

- Q: How does the area change betw $\Delta x \Delta y$ & $\Delta r \Delta \theta$?

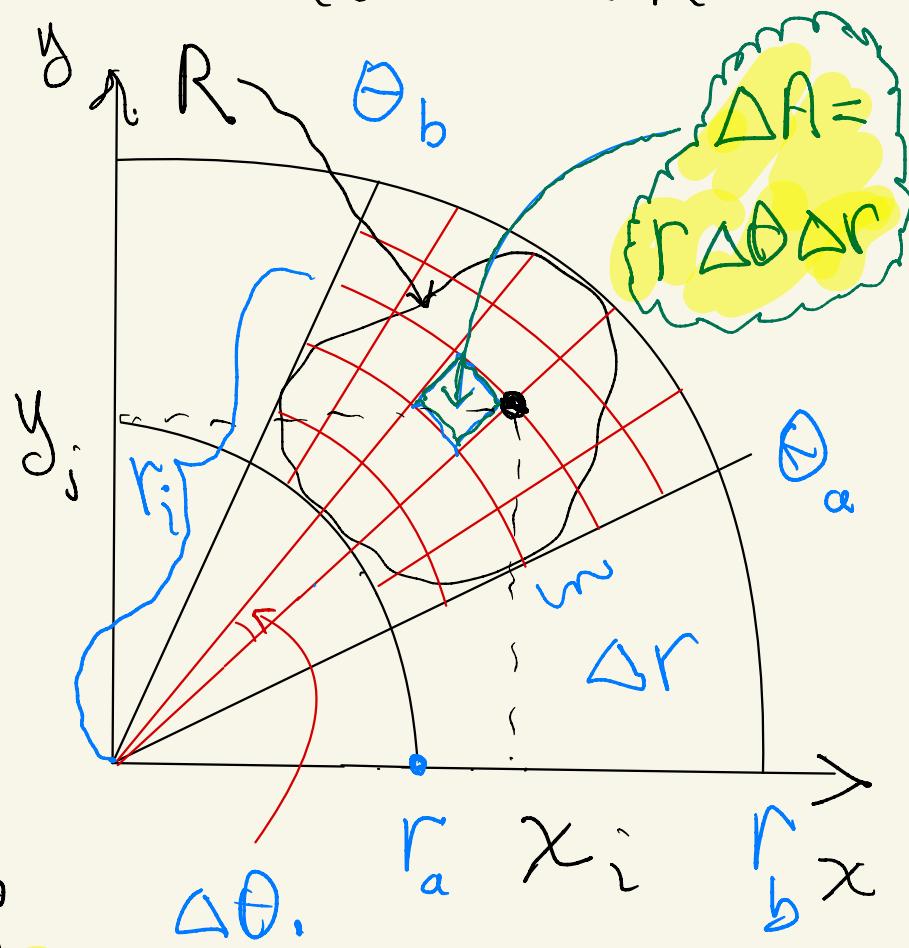
• So consider the problem of evaluating $\iint f(x, y) dA$ in polar coordinates -

To do this

we write integral as

a Riemann

Sum in (r, θ)



$$x_i = r_i \cos \theta_j$$

$$y_j = r_i \sin \theta_j$$

Riemann SUM
in r, θ

$$\iint_R f(x, y) dA = \lim_{N \rightarrow \infty} \sum_{(r_i, \theta_j) \in R_{r, \theta}} f(r_i, \theta_j) \Delta r \Delta \theta$$

$$\sum_{(r_i, \theta_j) \in R_{r, \theta}} \tilde{f}(r_i, \theta_j) \Delta r \Delta \theta$$

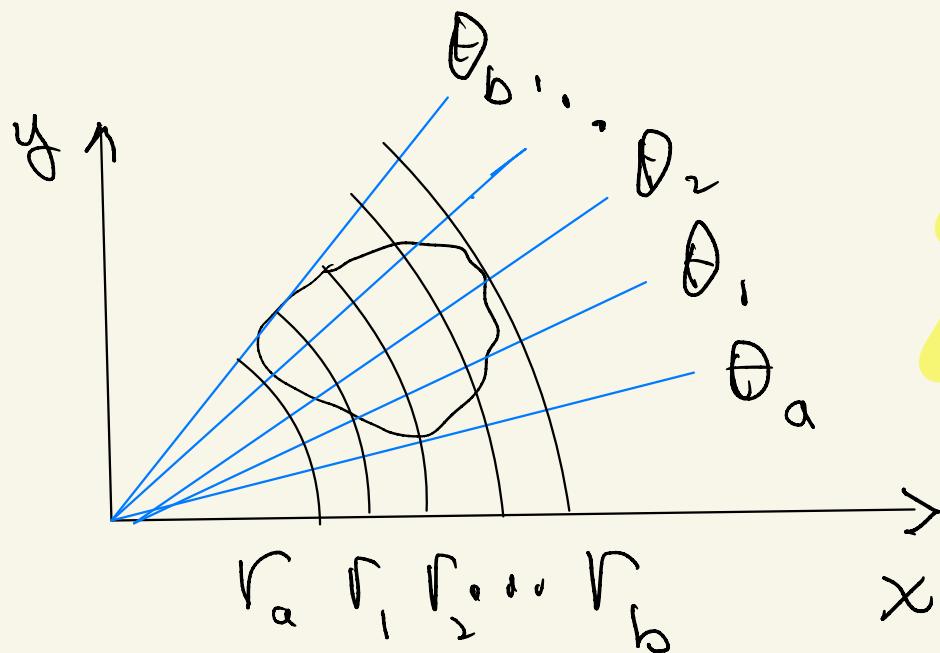
• **that is:** Draw the region R_{RD} in xy -coordinates, cover it with a grid

$$r_a = r_0 < r_1 < \dots < r_N = r_b$$

$$\theta_a = \theta_0 < \theta_1 < \dots < \theta_N = \theta_b$$

$$\Delta r = \frac{r_b - r_a}{N}, \quad r_i = r_a + i \Delta r$$

$$\Delta \theta = \frac{\theta_b - \theta_a}{N}, \quad \theta_j = \theta_a + j \Delta \theta$$



View R_{RD}
in the
 xy -plane

(5)

⑥

- Main question: what is the amplification factor?
I.e., how much must area $\Delta r \Delta \theta$ in (r, θ) -plane be multiplied to give its area in the (x, y) -plane?

That is:

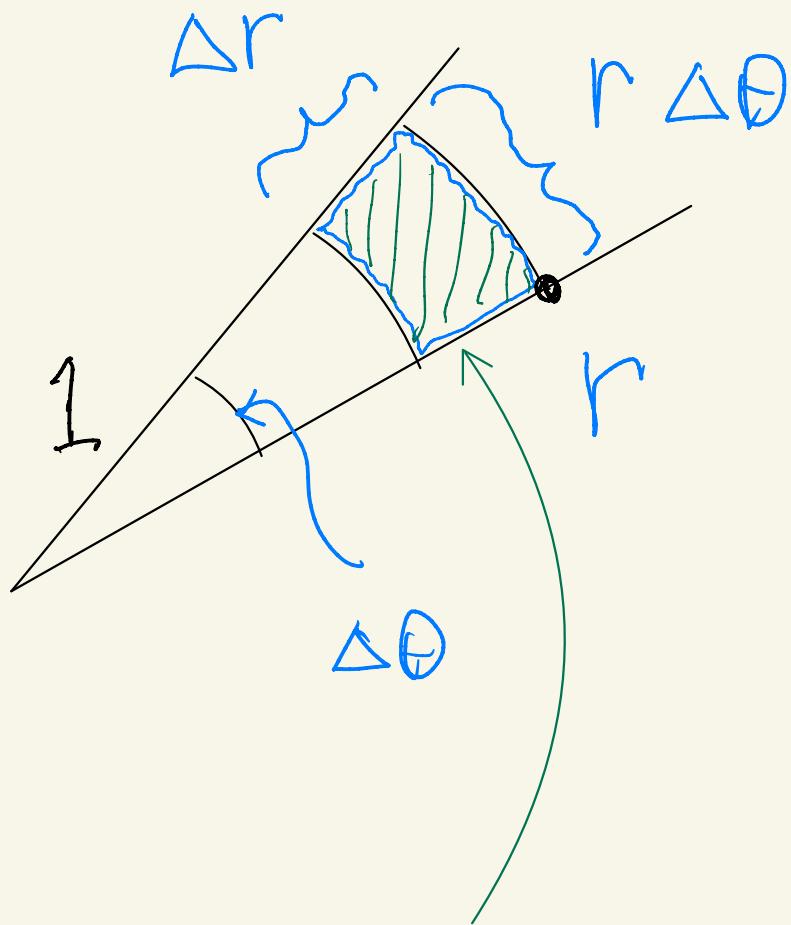
$$\Delta x \Delta y = \boxed{?} \Delta r \Delta \theta$$

↑ Amplification factor for area

Ans: We get this from the geometry

- To get amplification factor blow up the picture —

7



Area in the (x, y) -plane
is $\Delta A = r \Delta r \Delta \theta$

Amplification factor = r

• Conclude:

8

$$\iint_R f(x, y) dA = \lim_{N \rightarrow \infty} \sum_{(x_i, y_i) \in R_{xy}} f(x_i, y_i) \Delta x \Delta y$$

$$= \lim_{N \rightarrow \infty} \sum_{(r_i, \theta_i) \in R_{r\theta}} f(r_i \cos \theta_i, r_i \sin \theta_i) r_i \Delta r \Delta \theta$$

Riemann Sum in $(r\theta)$

$$= \iint_{R_{r\theta}} f(r \cos \theta, r \sin \theta) r dr d\theta$$

requires
amplification
factor

• Key Take Away: We are interested in evaluating an integral in (x, y) -coordinates

We express the function and draw the region in (x, y) -coords

We write the grid in (r, θ) & express a volume element in (r, θ)

$$\Delta V_{ij} = f(r_i \cos \theta_j, r_i \sin \theta_j) r_i \Delta r \Delta \theta$$

$$\iint_R f(x, y) dA = \sum_R \Delta V_{ij} = \iint_R f(r, \theta) r dr d\theta$$

" $\Delta x \Delta y$ "

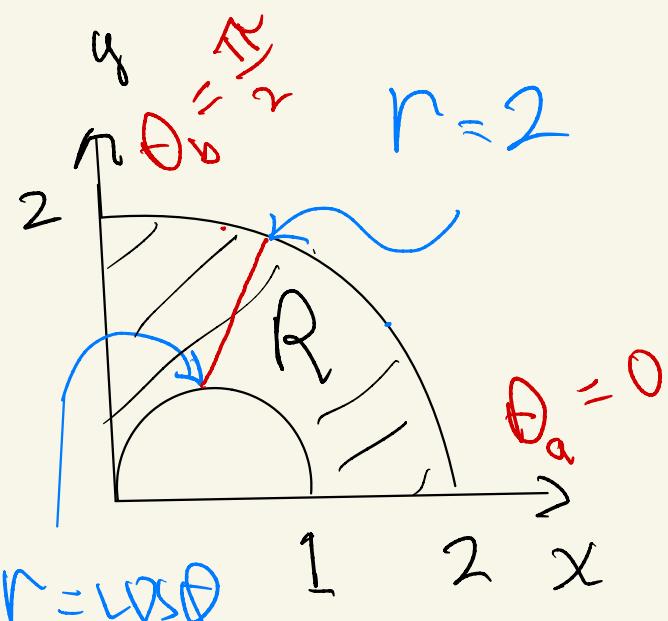
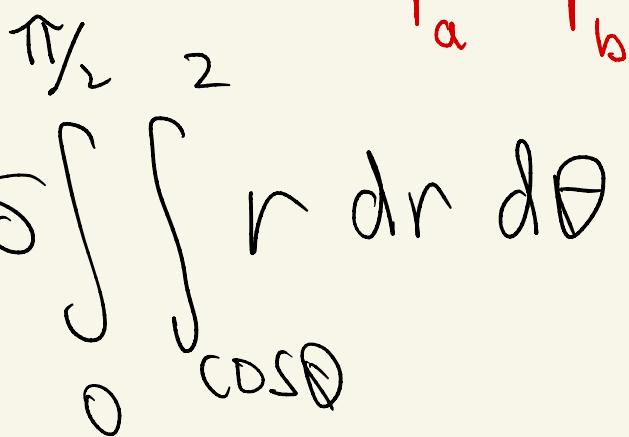
Q Example ① Find the mass ID
 M of a metal plate of
 constant density $\delta(x, y) = \delta = \text{const}$
 that lies betw $r = 2$, $r = \text{CDSD}\theta$,
 $0 \leq \theta \leq \frac{\pi}{2}$

Soln: Picture

$$\text{Mass} = \iint_R \delta \, dA$$

$$= \iint_{R_{xy}} \delta \, dx \, dy$$

$$= \iint_{R_{r\theta}} r \, dr \, d\theta = \int_0^{\frac{\pi}{2}} \int_{\text{CDSD}\theta}^2 r \, dr \, d\theta$$



$$\text{Mass} = \int_0^{\pi/2} \int_0^r r dr d\theta$$

11

$$= \int_0^{\pi/2} \int_{\frac{r}{2}}^r \int_{r=\cos\theta}^{r=2} dr d\theta$$

$$d\theta = \int_0^{\pi/2} \frac{1}{2} - \frac{\cos\theta}{2} d\theta$$

$$= 2 \int \frac{\pi}{2} - \frac{1}{2} \int \int_{0}^{\pi/2} \cos^2\theta d\theta$$

$$\frac{1}{2} (1 + \cos 2\theta)$$

$$= \pi - \frac{1}{4} \int_0^{\pi/2} 1 + \cos 2\theta d\theta$$

$$= \pi - \frac{1}{4} \int_0^{\pi/2} \left(\theta + \frac{1}{2} \sin 2\theta \right) d\theta$$

$$= \pi - \frac{\pi}{8} - \frac{1}{8} \int_0^{\pi/2} \sin 2\theta d\theta = \frac{\pi}{8}$$

Set up the integral in
polar coords for radius of gyration
about the x-axis:

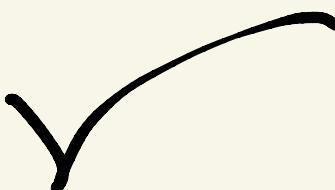
Soln: Rad Gyration = $\sqrt{\frac{I_x}{M}}$

$$I_x = \iint_P y^2 \delta \, dA$$

$$= \iint_P (r \sin \theta)^2 \delta \, r \, dr \, d\theta$$

$$= \int_0^{\pi/2} \int_{R \cos \theta}^{R/2} r^3 \sin^2 \theta \, dr \, d\theta$$

$$M = \frac{\pi R^2}{2}$$



② Important example -

(13)

- The "bell shaped curve" of probability theory is called the Gaussian Distribution

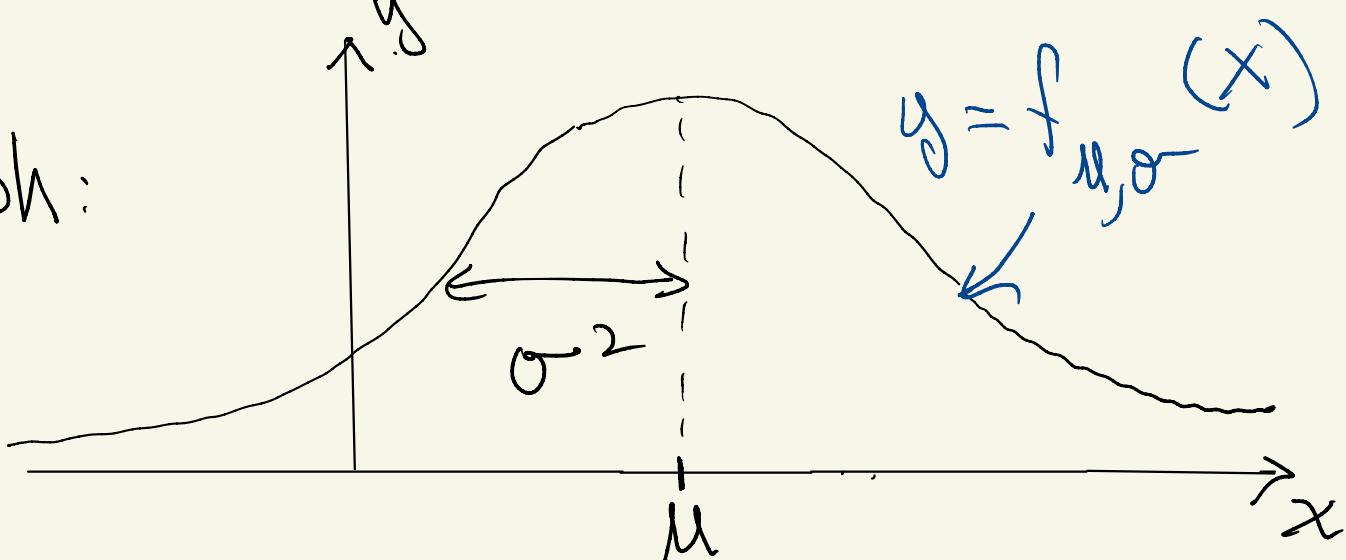
$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = f_{\mu, \sigma}(x)$$

μ = mean

σ^2 = variance

σ = standard deviation

Graph:

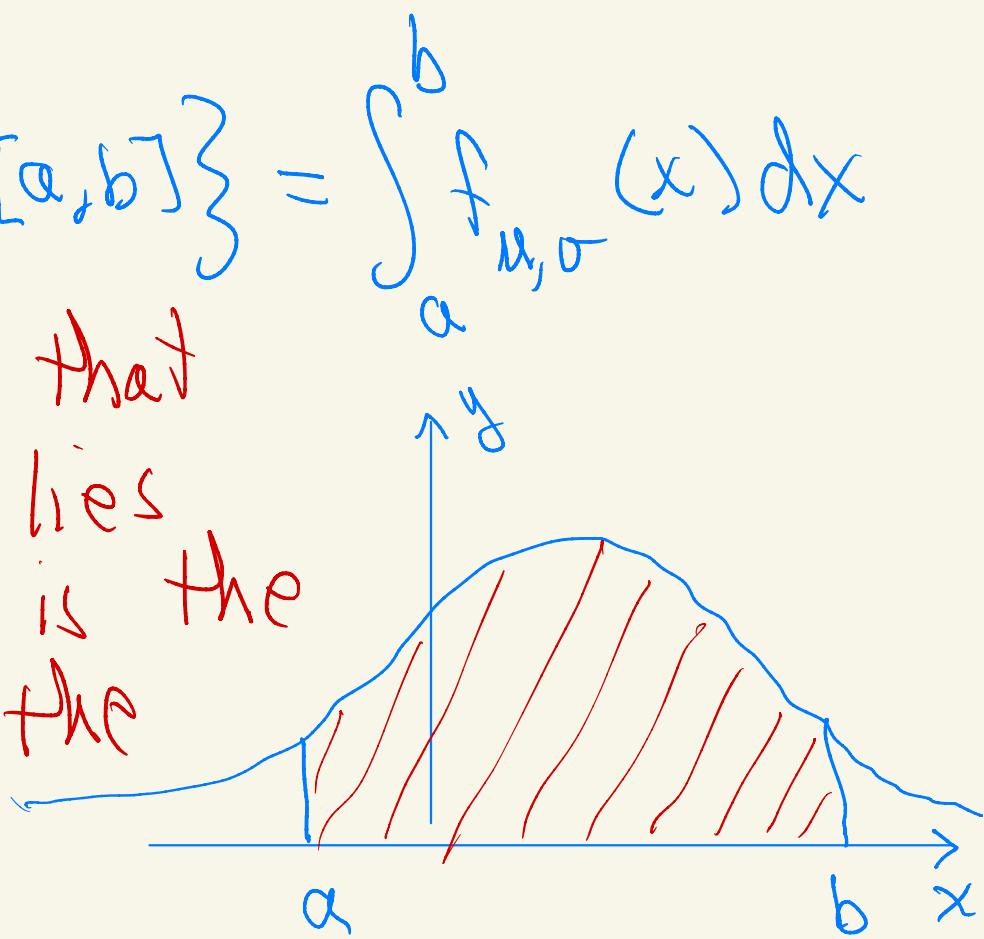


① Theorem: The average of 14
 N outcomes of a random variable
 (appropriately rescaled) always
 tends to $f_{\mu, \sigma}$ for some μ, σ

• Background: in the modern
 theory of probability (Kolmogorov)

$$\text{Prob}\{x \in [\alpha, b]\} = \int_{\alpha}^b f_{\mu, \sigma}(x) dx$$

"The probability that
 the outcome lies
 betw α & b is the
 area under the
 graph"



Probability is a number between zero and one -
So for the theory to make sense, we must have

$$\int_{-\infty}^{\infty} f_{u,v}(x) dx = 1$$

Problem: Prove this!

Soln: Simplify and evaluate in polar coordinates

• Change Variables

$$f_{\mu, \sigma}(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\left(\frac{x-\mu}{\sigma}\right)^2}$$

So ...

$$\int_{-\infty}^{\infty} f_{\mu, \sigma}(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\left(\frac{x-\mu}{\sigma}\right)^2} dx$$

Set: $u = \frac{x-\mu}{\sigma}$

$$du = \frac{dx}{\sigma}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2} du$$

$$\int_{-\infty}^{\infty} f_{\mu, \sigma}(x) dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} du$$

Conclude: it suffices to show

$$\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}$$

or

~~$$\int_0^{\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$~~

Problem - there is no Math 21B
substitution that works ?

For example: $V = u^2 \Rightarrow dv = 2u du$

Doesn't work !

22

17

The new trick employs
polar coordinates —

Set

$$I = \int_0^\infty \int_0^\infty e^{-x^2-y^2} dy dx$$
$$= \int_0^\infty e^{-x^2} \left[\int_0^\infty e^{-y^2} dy \right] dx$$

constant?

$$= \left[\int_0^\infty e^{-y^2} dy \right] \int_0^\infty e^{-x^2} dx$$

same integrals

$$= \left(\int_0^\infty e^{-x^2} dx \right)^2$$

\Rightarrow

$$\int_0^\infty e^{-x^2} dx = \sqrt{\pi}$$

Thus to evaluate:

19

$$I = \int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$$

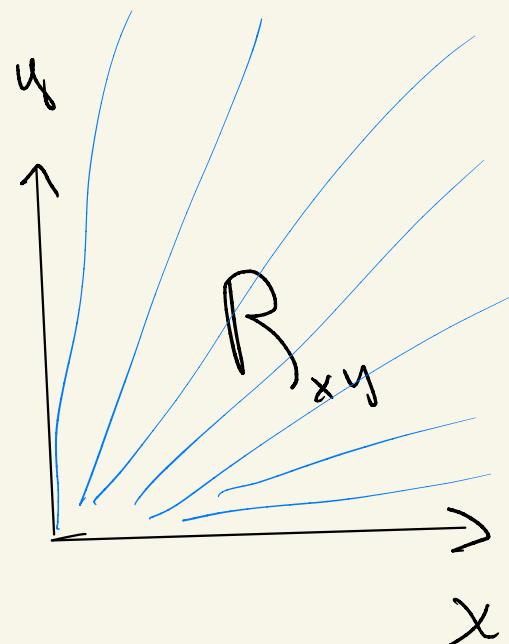
polar coordinates: $r^2 = x^2 + y^2$

$$R_{xy}: [0, \infty] \times [0, \infty]$$

$$R_{r\theta}: 0 \leq r \leq \infty, 0 \leq \theta \leq \frac{\pi}{2}$$

thus

$$I = \int_0^{\frac{\pi}{2}} \int_0^{\infty} e^{-r^2} r dr d\theta$$



$$I = \iint_0^{\pi/2} e^{-r^2} r \, dr \, d\theta$$

$$u = r^2 \quad du = 2r \, dr$$

$$= \int_0^{\pi/2} \frac{1}{2} \int_0^{\infty} e^{-u} \, du$$

$$= \int_0^{\pi/2} \frac{1}{2} \left[-e^{-u} \right]_{u=0}^{u=\infty} \, d\theta$$

$$= \int_0^{\pi/2} \frac{1}{2} \, d\theta = \frac{1}{2} \left[\theta \right]_0^{\pi/2}$$

$$= \frac{\pi}{4}$$

$$\int_0^{\infty} e^{-u} \, du = \sqrt{I} = \frac{\sqrt{\pi}}{2}$$

✓